Part Number Hot Search : 
JANTXV2 HV9921N8 DB104 1SMA4755 1SMA4755 PZU12B AWT6107 SA120
Product Description
Full Text Search
 

To Download 1SMB2EZ100 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 1SMB2EZ11 THRU 1SMB2EZ200
SURFACE MOUNT SILICON ZENER DIODE VOLTAGE - 11 TO 200 Volts Power - 2.0 Watts
FEATURES l Low profile package l Built-in strain relief l l l l l l Glass passivated junction Low inductance Excellent clamping capability Typical ID less than 1 gA above 11V High temperature soldering : 260 J /10 seconds at terminals Plastic package has Underwriters Laboratory Flammability Classification 94V-O
DO-214AA
MECHANICAL DATA Case: JEDEC DO-214AA, Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, method 2026 Polarity: Color band denotes positive end (cathode) except Brdirectional Standard Packaging: 12mm tape (EIA-481) Weight: 0.003 ounce, 0.093 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 J ambient temperature unless otherwise specified. SYMBOL Peak Pulse Power Dissipation (Note A) PD Derate above 75 J Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated IFSM load(JEDEC Method) (Note B) Operating Junction and Storage Temperature Range TJ,TSTG NOTES: A. Mounted on 5.0mm (.013mm thick) land areas. B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses per minute maximum.
2
VALUE 2 24 15 -55 to +150
UNITS Watts mW/J Amps J
1SMB2EZ11 THRU 1SMB2EZ200
ELECTRICAL CHARACTERISTICS (T A=25 J unless otherwise noted) VF=1.2 V max , IF=500 mA for all types
Type No. (Note 1.)
1SMB2EZ11 1SMB2EZ12 1SMB2EZ13 1SMB2EZ14 1SMB2EZ15 1SMB2EZ16 1SMB2EZ17 1SMB2EZ18 1SMB2EZ19 1SMB2EZ20 1SMB2EZ22 1SMB2EZ24 1SMB2EZ27 1SMB2EZ30 1SMB2EZ33 1SMB2EZ36 1SMB2EZ39 1SMB2EZ43 1SMB2EZ47 1SMB2EZ51 1SMB2EZ56 1SMB2EZ62 1SMB2EZ68 1SMB2EZ75 1SMB2EZ82 1SMB2EZ91 1SMB2EZ100 1SMB2EZ110 1SMB2EZ120 1SMB2EZ130 1SMB2EZ140 1SMB2EZ150 1SMB2EZ160 1SMB2EZ170 1SMB2EZ180 1SMB2EZ190 1SMB2EZ200
Nominal Zener Voltage Vz @ IZT volts (Note 2.) 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 22.0 24.0 27.0 30.0 33.0 36.0 39.0 43.0 47.0 51.0 56.0 62.0 68.0 75.0 82.0 91.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0
Test Maximum Zener Surge Current current IZT Maximum Zener Impedance (Note 3.) Leakage Current Current @ TA = 25 J mA IZM ir - mA Z ZT @ IZT ZZk @ IZK IZK IR VR mA (Note 4.) g A Max @ Volts Ohms Ohms mA 45.5 41.5 38.5 35.7 33.4 31.2 29.4 27.8 26.3 25.0 22.8 20.8 18.5 16.6 15.1 13.9 12.8 11.6 10.6 9.8 9.0 8.1 7.4 6.7 6.1 5.5 5.0 4.5 4.2 3.8 3.6 3.3 3.1 2.9 2.8 2.6 2.5 4.0 4.5 5.0 5.5 7.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 18.0 20.0 23.0 25.0 30.0 35.0 40.0 48.0 55.0 60.0 75.0 90.0 100.0 125.0 175.0 250.0 325.0 400.0 500.0 575.0 650.0 675.0 725.0 825.0 900.0 700 700 700 700 700 700 750 750 750 750 750 750 750 1000 1000 1000 1000 1500 1500 1500 2000 2000 2000 2000 3000 3000 3000 4000 4500 5000 5500 6000 6500 7000 7000 8000 8000 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 8.4 9.1 9.9 10.6 11.4 12.2 13.0 13.7 14.4 15.2 16.7 18.2 20.6 22.5 25.1 27.4 29.7 32.7 35.8 38.8 42.6 47.1 51.7 56.0 62.2 69.2 76.0 83.6 91.2 98.8 106.4 114.0 121.6 130.4 136.8 144.8 152.0 166 152 138 130 122 114 107 100 95 90 82 76 68 60 55 50 47 43 39 36 32 29 27 24 22 20 18 17 15 14 13 12 11 11 10 10 9 1.82 1.66 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00 0.91 0.83 0.74 0.67 0.61 0.56 0.51 0.45 0.42 0.39 0.36 0.32 0.29 0.27 0.24 0.22 0.20 0.18 0.16 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.10
NOTES: 1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device. 2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms O 10ms from the diode body, and an ambient temperature of 25 J (I 8 J , -2 J ). 3.ZENER IMPEDANCE (Zz) DERIVATION - The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms falue equal to 10% of the dc zener current (IZT or IZK) is superimposed on IZT or IZK. 4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, IZT, per JEDEC standards, however, actual device capability is as described in Figure 3.
RATING AND CHARACTERISTICS CURVES 1SMB2EZ11 THRU 1SMB2EZ200
c JL (t,D) TRANSIENT THERMAL RESISTANCE JUNCTION-TO-LEAD(J/W)
30 20 10 7 5 3 2 1 0.7 0.5 0.05 0.02 NOTE BELOW 0.1 SECOND, THERMAL RESPONSE CURVE IS APPLICABLE TO ANY LEAD LENGTH (L) 0.002 0.005 0.01 0.02 0.05 D = 0.5 0.2 0.1
0.01 0.0002
0.3 0.0001
D=0 0.0005 0.001
SINGLE PULSE GTJL = KJL(t)PPK REPETITIVE PULSES GTJL = KJL(t,D)PPK 0.1 0.2 0.5 1 2 5 10
Fig. 2-TYPICAL THERMAL RESPONSE L,
PPK, PEAK SURGE POWER(WATTS)
500 250 150 100 50 30 20 10 RECTANGULAR NONREPETITIVE WAVEFORM TJ = 25 J PRIOR TO INITIAL PULSE
IR, REVERSE LEADAGE(uAdc) @VR AS SPECIFIED IN ELEC. CHAR. TABLE
100
0.1 0.05 0.03 0.02 0.01 0.005 0.003 0.002 0.001 0.0005 0.0003 0.0002 0.0001 1 2 5 10 20 50 100 200 500 1K
.1 .
.2 .3
5
1
235 30
10
20
50
P.W. PULSE WIDTH (ms)
NOMINAL VZ (VOLTS)
Fig. 3-MAXIMUM SURGE POWER
c VZ, TEMPERATURE COEFFICIENT(mV/J ) @ IZT
8 6 4 2 0 -2 -4 3 4 6 8 10 12 RANGE
Fig. 4-TYPICAL REVERSE LEAKAGE
200
c VZ, TEMPERATURE COEFFICIENT(mV/J) @ IZT
100 RANGE
50 40 30 20
10 0 20 40 60 80 100 120 140 160 180 200
VZ, ZENER VOLTAGE @IZT (VOLTS) VZ, ZENER VOLTAGE @IZT (VOLTS)
Fig. 5-UNITS TO 12 VOLTS
Fig. 6-UNITS 10 TO 200 VOLTS
RATING AND CHARACTERISTICS CURVES 1SMB2EZ11 THRU 1SMB2EZ200
100
100
IZ, ZENER CURRENT (mA)
50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 1 23 4 5 67 8 9 10
IZ, ZENER CURRENT (mA)
50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 10 20 30 40 50 60 70 80 90 100
VZ, ZENER VOLTAGE (VOLTS)
VZ, ZENER VOLTAGE (VOLTS)
Fig. 7-VZ = 3.9 THRU 10 VOLTS
Fig. 8-VZ = 12 THRU 82 VOLTS
100
IZ, ZENER CURRENT (mA)
50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 100 120 140 160 180 200
c JL, JUNCTION-LEAD THERMAL RESISTANCE (J/W)
80 70 60 50 40 30 20 10 0 0
PRIMARY PATH OF CONDUCTION IS THROUGH THE CATHODE LEAD
1/8
1/4
3/8
1/2
5/8
3/4
7/8
1
VZ, ZENER VOLTAGE (VOLTS)
L, LEAD LENGTH TO HEAT SINK (INCH)
Fig. 9-VZ = 100 THRU 200 VOLTS
Fig. 10-TYPICAL THERMAL RESISTANCE
APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, TL, should be determined from: TL = c LAPD + TA c LA is the lead-to-ambient thermal resistance (J /W) and PD is the power dissipation. The value for c LA will vary and depends on the device mounting method. c LA is generally 30-40 J /W for the various chips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: TJ = TL + GTJL
GTJL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses or from Figure 10 for dc power. GTJL = c LAPD For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ (GTJL ) may be estimated. Changes in voltage, Vz, can then be found from: GV = c VZ GTJ c VZ , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.


▲Up To Search▲   

 
Price & Availability of 1SMB2EZ100

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X